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Four-dimensional kinks 

G S Whiston 
CERL, Kelvin Avenue, Leatherhead, Surrey, England 

Received 12 January 1981, in final form 24 April 1981 

Abstract. The homotopy classes of Lorentz signature metric tensor fields on parallelisable 
four-manifolds are classified for both compact and non-compact manifolds. It is demon- 
strated that the homotopy classes form Abelian groups whose generators correspond to 
generalised elementary ‘kinks’, and their extension structures are analysed. It is also 
demonstrated that all odd kink states have the fermionic property of being odd under 360” 
rotations. Speculations on the physical interpretation of four-dimensional kink states are 
made which generalise those of Shastri, Williams and Zvengrowski from three to four 
dimensions. 

1. Introduction 

If a four-dimensional manifold X carries a Lorentz signature metric tensor field, the 
relativistic physics generated by the structure ought to be stable to small smooth 
deformations of the underlying manifold and the metric. By extending the range of 
deformation, the question arises as to what structure is left if arbitrary homotopies are 
allowed, that is, what are the purely topological invariants of a pair comprising a 
four-manifold and a tangent Lorentz metric, and what physical interpretation, if any, 
can be placed on these invariants? The classification of homotopy classes of Lorentz 
metrics on homotopy classes of four-manifolds is therefore of great interest in general 
relativity theory. Indeed, by associating characteristic algebraic invariants with homo- 
topy classes, various authors, beginning with Finkelstein and Misner (1959), have been 
able to associate particle-like structures called ‘kinks’ with the homotopy classes. 

Shastri et a1 (1980) considered the homotopy classes of Lorentz metrics on a 
distinguished class of non-compact four-manifolds which arise naturally in general 
relativity. These are the bundle spaces X of line bundles on compact, closed, paral- 
lelisable three-manifolds M, where X is homotopy equivalent to M. The above authors 
were able to establish that for this type of parallelisable four-manifold, the set of 
homotopy classes of Lorentz metrics is an Abelian group whose generators are 
identifiable with ‘elementary’ kinks. The latter group was shown to be a group 
extension of H3(M,  2)  by H 1 ( M ,  Z2) ,  and it was also shown that each kink state can be 
labelled by an integer ‘kink number’ which counts the elementary kinks. 3 y  displaying 
the group of homotopy classes as a group extension, one is able to display the 
elementary kink generators and list the various possible ways that the elementary kinks 
combine by listing the possible group extension structures. It was also shown that for 
certain M,  odd kink states have the fermion-like property of ‘changing sign’ under 360” 
rotations about any spatial axis. The above authors suggested the following possible 
link between kinks and elementary particles. Suppose that an elementary particle 
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somehow warps space on ultramicroscopic scales in its immediate neighbourhood. The 
uncertainty principle allows one to locate the particle spatially within a region bounded 
by a two-sphere S 2 .  Thus, by identifying S 2  to a point, one may characterise the particle 
by a closed, compact three-manifold M. By further requiring M to carry a tangent 
spinor structure, one equivalently requires M to be parallelisable. Thus the 
classification of homotopy classes of Lorentz metrics on closed, compact, parallelisable 
three-manifolds in some way lists the possible types of space-time structure on 
ultramicroscopic scales. 

One can extend the above interpretation by noting that the uncertainty principle 
also limits localisability in time. If one visualises the space-time warp as some kind of 
four-dimensional knot travelling along a string, then one can only locate the knot within 
a region of space-time bounded by a three-sphere S3. In this way, by identifying S 3  to a 
point, one obtains a compact, closed four-manifold X which characterises the particle. 
It also turns out, fairly naturally, that X ought to be parallelisable, although this is not 
necessary for the interpretation. If a region bounded by S 3  contains no particle, then 
the region must be diffeomorphic to D4, the closed four-disc. Then, by identifying S3 to 
a point, one obtains a manifold X diffeomorphic to S4. In the three-dimensional case, 
by considering space-like two-spheres formerly occupied and presently occupied by 
particles, one naturally obtains a cobordism, through space-time, of S 3  to M. Such 
three-dimensional cobordisms are trivial in the sense that this places no topological 
restriction on M. For four-dimensions, one would expect that ‘empty’ space-time S4 be 
deformable into a manifold X containing a particle. The deformation might be 
achieved via a cobordism through a five-dimensional hyperspace since (Whiston 1974) 
any space-time is cobordant in the unoriented sense. If X is oriented cobordant to S4, 
the further imposition of internal Lorentzian structure and spinor structure would be 
sufficient to ensure (Whiston 1978) that X is parallelisable. 

The calculation of homotopy classes of Lorentz metric tensor fields on arbitrary 
parallelisable four-manifolds undertaken in this paper shows that only a limited class of 
four-manifolds have topology suitable for the basically three-dimensional kink theory 
where a unique kink number homomorphism occurs. In nature, many types of 
conserved particle numbers exist-baryon number, lepton number, and so on. Such a 
family of kink numbers is naturally obtained if one considers more general four- 
manifolds. Indeed, these numbers are counted by the Betti number b3. For compact 
four-manifolds, b3 3 1 is a natural consequence of Lorentz structure and the group 
H 4 ( X ,  Z,)  may yield an additional parity-like generator to the parity represented by the 
projection of a kink state into H 1 ( X ,  &). The latter group contains inrmation on the 
PT invariance of kink states. For example, if a kink state has a trivial projection, it 
represents a homotopy class of space-time orientable Lorentz metrics-the kink states 
@ and PT 0 are globally distinguishable. States with a non-trivial projection behave 
in some way analogous to the T O  meson where T O  and PT T O  are indistinguishable. 

It is with the motivation of the above speculative links between elementary particle 
theory and space-time topology in mind, as well as the relativistic classification, that this 
paper considers the classification of homotopy classes of Lorentz metrics on both 
compact and non-compact parallelisable four-manifolds. It should be borne in mind 
that the discussion of compact four-manifolds is mainly of relevance to kink theory 
because of the well known fact that compact space-times have closed time-like curves 
and are therefore of little physical interest as global space-time models. 

In § 2 ,  deformation classes of Lorentz metrics on Minkowski space are considered. 
Because of complexities of orientation, there are three notions of equivalence invariant 
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under homotopy: (a) Lorentz metrics with no preferred spatio-temporal orientation; 
(b) oriented Lorentz metrics where space and time orientations may be simultaneously 
reversed; (c) Lorentz metrics with preferred space and time orientations. 

The homotopy classes of the first and second kind of metric are in 1-1 cor- 
respondence with RP3,  the three-dimensional projective plane, whilst the homotopy 
classes of bi-oriented metrics are in 1-1 correspondence with S3.  On a parallelisable 
manifold X, the homotopy classes of Lorentz metric tensor fields may be put into 1-1 
correspondence with the homotopy sets of pointed maps [X, RP3]  and [X, S 3 ] .  In the 
first half of this paper, such sets are calculated for arbitrary manifolds of dimension less 
than five, but the physical interpretation is limited to parallelisable X .  It is demon- 
strated that [X, S 3 ]  is an Abelian group for dim(X) s 5 and that [X, RP3]  is an Abelian 
group if dim(X) S 4. Having established the commutativity of the groups, their exten- 
sion structures, and hence a list of their generators and their combination into kink 
states, are investigated using elementary group extension theory. The first half of the 
paper closes with the calculation of [X,  RP3] for several examples of compact four- 
manifolds. 

The second half of this paper presents an analysis of the spin structure of kink states 
on four-manifolds, the word 'spin' having its usual meaning in kink theory. It is 
demonstrated that kink states which lift to S 3  and have odd generalised kink number 
have the fermion-like property of changing sign under 360" rotations about any spatial 
axis. The generalised kink number is defined by mapping into H3(X, 2)  and the parity 
of the projection is defined by mapping into H 3 ( X ,  Z2), Note that if X is a compact 
parallelisable manifold of dimension three or four, the definition always makes sense 
because the relevant cohomology groups are non-trivial, although interpretative 
difficulties arise if torsion is present in the integral cohomology group. 

Shastri et a1 obtained a similar result for the case when X is homotopy equivalent to 
a three-manifold of a special type-their type 2. Their result is extended to any three- 
or four-manifold for which the above definition of odd kink number makes sense, by a 
detailed analysis of the rotation which makes the role of the kink state explicit. It is 
interesting to note that the above result is consistent with the interpretation of the (free 
part of) H3(X,  Z )  as a set of conserved particle numbers. For example, the parity of an 
odd fermion state is independent of whether the fermions are leptons or baryons. 

2. Deformation classes of Lorentz metrics on R4 

It is well known that the set of non-degenerate, symmetric, real, non-oriented bilinear 
forms of signature ( p ,  q )  on RP" is retractable onto the space O ( p  + q ) / ( O ( p )  X O(q))  
of non-oriented orthogonal decompositions RP" R P  OR'. The retraction is defined 
by noting that a bilinear form of signature ( p ,  q )  defines a decomposition of RP+' into a 
sum of positive and negative definite eigenspaces. The inclusion map of O ( p +  
q ) / ( O ( p )  x O(q) )  into the space of forms sends a decomposition with associated 
projection maps P, Q into the quadratic form ( x ,  y )  = ( P ( x ) ,  P ( y ) ) - ( Q ( x ) ,  Q(y))  
where P and Q ( ,) denotes a positive definite quadratic form. The above inclusion map 
is a left homotopy inverse to the retraction and thus, from the homotopy theoretic 
viewpoint, any quadratic form of signature ( p ,  q )  is deformable into one of the type 
defined above, Suppose that one chooses an orientation of Rp+' consistent with 
semi-orientations on R and R'. Then the corresponding space of orthogonal deco- 
mpositions is replaced by SO( p + q) / (SO(  p )  x SO(q)),  since in this case SO(p + q )  acts 
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transitively on the orthogonal decompositions with isotropy group S O ( p )  X SO(q). If 
one relaxes the requirement of orthogonality, one can alternatively start with the fact 
that GL(p  + q )  acts transitively on the space of signature+, q )  bilinear forms with 
isotropy group O ( p , q )  and there is hence a bijection of the space of forms onto 
GL(p  + q ) / O ( p ,  q ) .  The inclusion map of O ( p  + q )  into GL(p + q )  induces an inclusion 
map 

(o(p +t4) ,  o(p + q )  n o(p, 4 ) )  = ( G L ( ~  + q ) ,  o(p, q)), 

and because O ( p  + q )  fl O(p, q )  = O ( p )  x O(q),  the inclusion map mentioned above is 
obtained. The Lie group O(p,  q )  has four connected components defined by the onto 
homomorphisms cl, c2: O(p, q )  + Zz where c1: x -sgn[det(x)] and v2: x ++ 

sgn{det[4(x)]} 4 ( x )  being defined by 4 (x ) (RP)  = x ( R P )  f l  RP.  The subgroup Ker(cl)  
is obviously just SL(p + q )  n O( p ,  q )  = SO( p ,  q )  and Ker(u2), which will be denoted by 
O+(p,  q ) ,  is the subgroup of O(p,  q )  preserving the orientation on RP.  The subgroup 
O+(p, q )  fl SO(p, q )  = SO+(p, q )  is the index four component of the identity and 
bi-preserves the semi-orientations on R P  and R'. In short, there are the following 
deformation classes of oriented bilinear forms of signature ( p ,  q )  on R"': 

(1) non-oriented forms classified by 

O(P + q ) l ( O ( p )  x O h ) )  = GL(P + q ) / O ( p ,  4 )  = L O ;  
(2) consistently semi-oriented, oriented forms classified by 

SO(P  + M S O ( P  +q)nso(p, 4 ) )  = s u p  + q ) i s o ( p ,  4 )  = L S ;  

(3) bi-oriented, oriented forms classified by 

SOhJ + q ) / ( S O ( p )  x soh)) = S U P  + q) /SO+(p ,  4 )  = LS+. 

Note that O(p,  q )  fl SO(p + q )  = (SO(p) x SO(q)) U ( P  SO(p)  x Q SO(q))  where P 
and Q are diagonal orientation reversing maps in O ( p )  and O(q) .  That is, x E 

O(p ,  q )  fl SO(p + q )  if x simultaneously either preserves or reverses the semi-orien- 
tations in R P  and R'. The sets O(p,  q )  fl SO(p + q )  and SO(p)  x SO(q)  xZ2(cy) are in 
bijective correspondence where cy is the antipodal map on R"'. Specialising to 
( p , q ) = ( l ,  3), LO, LS and LS+ are deformable into the subspaces R P 3 =  
0(4)/(0(1) x 0(3)), RP3 =S0(4 ) /0 (3 )  and S 3  zS0(4 ) /S0(3 ) .  Note that SO(3) x 
Z2(PT) is isomorphic to O(3) c SO(4) via the injection x H (s(x) x, s(x)) where 
s(x) = sgn[det(x)] for x E O(3). 

3. Lorentz metric tensor fields 

The Lorentz signature quadratic forms on R 4  may be split into homotopy classes as 
defined above with representatives generated by any one-plane in R4. Given a 
four-manifold X ,  there is an analogous construction in each tangent space and a fibre 
bundle over X with fibre LO, LS  or LS+, and the bundle is naturally associated with the 
tangent frame bundle. Suppose that T :  E + X  denotes the RP3  bundle. Then the set of 
homotopy classes of cross sections can be identified with the fibre S ( X ) =  
T#' (Ilxl) c [X, E ]  where lX is the identity map of X .  The calculation of the above set is 
a formidable task for arbitrary bundles, but for trivial bundles (e.g. the tangent bundle 
of a parallelisable manifold) it is easy to show that S ( X )  is in 1-1 correspondence with 
either [X,  RP3] or [X,  S3]. 
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If X is a parallelisable manifold, the homotopy classes of tangent Lorentz metrics 
are generated by unoriented lines 6 E RP3.  The question then arises of assigning a 
global direction to the lines over the points of X, that is, given lines f ( x )  c T,, and that 
f ( x )  represents points z and PT z in Sl,  can one globally choose say, z ,  i.e. doesf lift to 
S3? This question can be answered using elementary covering space theory. A 
standard result states that given a cover p : ? + Y, a map f : X + Y lifts to if and only if 
~ l ( f ) ( ~ l ( X ) )  c ~ l ( p ) ( ~ l ( Y ) ) .  Hence if Y is simply connected, If1 lifts to if and only 
if .rrl(f) = 0. Consider the Z2 bundle U: S3 + RP3 = S 3 / Z 2 .  Then we have established 
that the following sequence of sets and mappings is exact: 

[X, S31 - [ X ,  RP31 ; Hom(m(X),  2 2 )  
U #  

where W : \ f l - ~ ~ ( f ) .  The spaces S3 and RP3 are Lie groups and the projection 
U: S3 -+ RP3 is isomorphic to Spin(3) + S0(3) ,  which is a group homomorphism. Hence 
[X,  S3]  and [X, RP3]  are groups under the multiplication induced by the point-wise 
multiplication of maps and U# is a group homomorphism. The map W is also a group 
homomorphism, because if m : RP3 x RP3 + RP3 is the multiplication map, the induced 
homotopy homomorphism .rrl(m) coincides with the usual addition in r l ( R P 3 ) .  The 
above exact sequence can be revamped slightly by replacing Hom(xl(X),  2,) by the 
isomorphic group H1(X, Z2) .  The resulting homomorphism, again denoted by W, 
maps a homotopy class of maps If1 into the cohomology class f * (  WI) where W1 is the 
Stiefel-Whitney class of the Z2 bundle U: S3 -+ RP3.  

In order to obtain more information on the above sequence, one has to dig a little 
deeper. Regarding S3 + RP3 as Spin(3) + SO(3) and H1(X, 2 2 )  as [X, K ( Z 2 ,  l ) ] ,  the 
above sequence is part of the Puppe sequence for the fibration (Avis and Isham 1980) 

Bi 
BZ2 = K(Z2, 1) - BSpin(3) 

hJ 
BSO(3) ---+ K(Z2, 2) 

w2 

i 
where BU and Bi are induced by the extension 22-Spin(3)SSO(3) and W2 is the 
second universal Stiefel-Whitney class. After a little rearrangi%, the Puppe sequence 
becomes 

Firstly, [X, 2 2 1  = 0 for a path connected space, whicn implies that r# is injective 
because it is a group homomorphism. According to Avis and Isham (1980), Bu# is an 
injective map for four-manifolds, i.e. a Spin(3) bundle on a four-manifold is uniquely 
determined by the SO(3) bundle that it covers, each being determined by the Pontry- 
agin class in H 4 ( X , Z ) .  This implies that W is an epimorphism. The method of 
classification is now clear. Iff*( W )  = 0 for I f /  E [X, RP3] ,  I f 1  lifts uniquely to [X, S3] ,  S 3  
being one stage simpler topologically than RP3.  Of course, if I f 1  +Z Im(r#) ,  / f l  is only 
specified by the characteristic class f * (  Wl) up to an element of [X, S3].  One would like 
to be able to define a splitting homomorphism [X, RP3]--,[X, S3] which would fully 
determine If1 in terms of invariants of [X, S3] as well as f * (  Wl). That is, one needs to 
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know what type of group extension [X,  RP3] is and whether or not it is Abelian. Having 
established that [ X ,  RP3] is a group extension of [X,  S3]  by H 1 ( X ,  Z,) for any connected 
four-manifold, 

[X,  S3]-[X, RP3]--H1(X, ZZ), 
UP W 

the next stage is to calculate the group [X, S 3 ] .  

4. The group [ X , S 3 ]  

Because S 3  is two-connected, it is a relatively simple matter to obtain a Postnikov 
resolution (Thomas 1966, Avis and Isham 1979, Isham 1981), i.e. a resolution of the 
constant fibration S 3 A 0  up to stage four. We need to know the homotopy groups 
7rq(S3) for O s q ~ 4 : -  7rq(S3)=0 for 4'3, r 3 ( S 3 ) = Z  and 7r4(S3)=Z2. The ton- 
struction starts at level three: 

s3 s3,  

Because B 0 A is trivially null homotopic for any 0, A lifts to E3, which is the pull-back to 
0 of the path fibration over K ( Z ,  4). Thus E3 = K ( Z ,  3) and i can be taken as the 
identity map. If we choose v = q3 = ( S 3 ) ,  the generator of H3(S3 ,  Z ) ,  q3 is obviously a 
three-equivalence. The next stage of the resolution, level four, involves the lifting of q3 
to a four-equivalence q4: 

J 
K (293)  7 K (Z2 ,5 ) .  

Fq3 is the homotopy fibre of q3, i and j are inclusion maps and v is the map on Fq3 induced 
by q4,  The latter map is a lifting of q3 to E4 which is the pull-back to K ( Z ,  3) of the path 
fibration over K ( Z z ,  5 )  along a cohomology operation 0, E H s ( K ( Z ,  3), 2,). Such a 
lifting will always exist for any B2 because 0,o q3 = 0 follows from H5(S3 ,  Z )  = 0. In 
order to obtain a four-equivalence we have to choose 8, such that r 4 ( v )  is an 
isomorphism, and to ascertain which 82 to use, we examine the Serre exact sequence of 
the fibration q3, since a standard result asserts that the set of appropriate & lies in the 
image of the transgression relation T from fibre into base cohomology 
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Note that the groups H4(S3, Zz) and H 5 ( S 3 ,  2,) are trivial and therefore T is an 
isomorphism. In this case, any non-trivial 8 2  induces a q4 which is a four-equivalence. 
According to a result of Serre (1972), H s ( K ( Z ,  3), Z2) is generated by the cohomology 
operation Sq207rz where Sq2 is the usual mod(2) Steenrod square and m is the 
coefficient homomorphism induced by the extension Z -Z+ZZ. We note that 
,R(Sq207rz) coincides with the generator Sq207r2 of H 4 ( K ( Z ,  2), Z )  which is the map- 
ping x H IxI2 U IxIz on two-dimensional cohomology classes x.  Recall that the class 
1q31 E H3(S3 ,  2) is the generator. Thus, because q4 is a four-equivalence and (Ip41) = 
1431, we may identify lp41 with the generator ( S 3 )  of H3(E4,  2)  when identifyingE4 with 
S 3  for four-manifold calculations. Having detailed the main mappings in the resolution, 
we consider the Puppe sequence of the fibration p4: 

2 =z 

For four-manifolds, H 5 ( X ,  2 2 )  = 0 so that p4#: 1 f l * /p40  f l =  f*(lp41) = f* (S3)  is a sur- 
jective function. We have therefore proved the following result, which is a special case 
of the Steenrod classification theorem. 

Theorem 1. Let X be a four-manifold. Then the group [ X ,  S3]  is part of the following 
exact sequence of groups and homomorphisms 

H 2 ( X ,  Z)-H4(X, 22)-[X, S3]--H3(X, 2)  
sq2. “ 2  i# P4# 

where p4# : I f l -  f * (S3 )  and Sq207rz: x - 1x12“ Ixlz. 
It remains to demonstrate that p4# and i# are homomorphisms. The proof that p4# 

is a homomorphism is to be found in Shastri et a1 (1980) whilst i# is non-trivial only if X 
is compact. For this case, Im(i#) = Ker(p4#) is a subgroup (because p4# is a homomor- 
phism) of order two in [X,  S3] .  This implies that its non-trivial element must be of order 
two and hence that i# is a homomorphism. 

We now discuss the implications of theorem 1 for arbitrary four-manifolds. 
(1) Non-compact four-manifolds 

As we noted above, H4(X,  Zz)  = 0 if X is non-compact and it therefore follows that p4# 
is an isomorphism of [X,  S3]  onto H3(X,  Z ) .  

If X is compact, the structure of [X,  S3]  is a little more complicated, for we always have 
H4(X,  Z2) = ZZ. Moreover, if X is parallelisable, or just a space-time, x ( X )  = 0 implies 
that b3, the third Betti number of X ,  is non-zero. The structure of H 3 ( X , Z )  is 
complicated by the possible presence of torsion, but this torsion is easy to spot, being 
generated by torsion in v l ( X ) .  We are interested in the homomorphism i# and hence 
Sq20 7r2.  If X is a four-manifold, there is a characteristic class V E H2(X,  Z2)  called the 
Wu class of X such that for all x E H2(X ,  ZZ) ,  Sq2(x) = x U x = V u  x. It can be shown 
that for manifolds of dimension divisible by four, where a similar construction can be 
performed, that V is a function of Stiefel-Whitney classes generated by Wu’s formula 
(Spanier 1966) which reduces to V = W2 in dimension four. Therefore, given x E 

H 2 ( X ,  Z ) ,  Sq20 7r2(x )  = Wz U IxIz. There are the following cases to consider: 
(a) Sq207rz = 0. In this case, i# is a monomorphism and [X,  S3] is a group extension of 
H4(X,  2,) by H3(X ,  Z ) .  Note that Sq20.rr2 = 0 in the following cases: 

(2) Compact four-manifolds 

(i) 7r2 = 0 or equivalently, all elements of H 2 ( X ,  Z )  are divisible by two; 
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(ii) Sq2 = 0 or W2 = 0: X is a spin manifold (true if X is parallelisable); 
(iii) Im(7r2) c Ker(Sq2); 

(b) Sq207r2 # 0. If Sq20r2  # 0, i#  is the trivial homomorphism and, as for the case of 
non-compact manifolds, [X,  S3]  is isomorphic to H3(X,  Z).  

The above calculations have linked the groups [X, RP3]  and [X, S3]  and have 
established extension structures in terms of cohomology groups. Because the theory of 
group extensions is much simpler for Abelian extensions, the following analyses are 
directed towards establishing commutativity. The following simple argument based on 
one presented in Shastri et a1 (1980), connects two-torsion in [ X , S 3 ]  with com- 
mutativity in [X, RP3] .  

Proposition 1. Let X be any space such that [X ,  S 3 ]  is Abelian. Then if [X,  S3]  has no 
two-torsion, [X,  RP3]  is Abelian. 

Proof. Consider the map q :  RP3-S3 defined by q 0 U = 2 where 2:  S3 + S3 is the 
squaring map x HX'. q# is a group homomorphism on Im(u#) if [X,  S3] is Abelian 
because in that case, 2# is an endomorphism. Let aba-lb-' be a commutator in 
[X,  RP3] .  Then the commutator lies in Ker(W) because H ' ( X ,  Z,) is Abelian, and 
hence there is an element c of [X,  S3]  such that aba-lb-l= a # ( c ) .  But the commutator 
also lies in Ker(q,) because [X,  S 3 ]  is Abelian, and hence q# 0 u # ( c )  = c 2  = 0. There- 
fore if [X,  S3]  has no two-torsion, c = 0 which implies that aba-lb-' = 0. 

The above result only gives partial information on commutativity for a broad class of 
spaces, whilst the two following theorems state that [X,  S 3 ]  is always Abelian for 
manifolds X with dim(X) s 5 and that [X, RP3]  is Abelian for manifolds X with 
dim(X) s 4. The result on [X,  S3]  is remarkably direct, whilst the result on [X, RP3]  
involves a Postnikov resolution of a lifting of the commutator map on RP3.  

Theorem 2. If X is a manifold of dimension s5, [X, S3]  is an Abelian group. 

-1 -1 Proof. Let [ , 3 :  S3 X S3 + S3 be the commutator map on S3:  [ , 1: (x, y ) - x y x  y . 
Then the induced map [ , I #  : [X,  S3 x S3]  = [X,  S 3 ]  x [X, S3]  + [X,  S3]  defines the 
commutator on [X,  S3] .  For, suppose that 1 f l ,  Ig/ E [X, S3] ,  then [ I  f l ,  lgl] = 

If/ k lfI-'lg/-' = / f g f - ' g - l l =  I[ 1 o (fxg) o AI = [ l# ( l ( f ,  g ) l )  where ( f ,  g )  denotes the 
map ( f  x g )  0 A.  Consider the following sequence of spaces and maps: 

Given a space Y and a map q : S3 x S3 + Y such that q 0 J = 0 on the coordinate 

It is easy to establish that [ , ] 0 J = 0 (all elements commute with the identity) and hence 
there is a factorisation [ , ] = I/J 0 P where I+!J : S6 + S 3 .  One therefore obtains a factorisa- 
tion of the induced commutator map: 

subspace S3 v S3, there is a continuous induced map q' : S3 A S3 + Y such that q '  0 P = 4. 

p* 
[X,  s3 x S3] - [X ,  S 6 ]  =H6(X,  2) 
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It is easy to verify that S6 is six-equivalent to K(Z,6), such an equivalence being 
realised by the fundamental class ( S 6 ) .  Therefore [X, S6]  may be replaced by 
H6(X, Z )  = 0 for dim(X) s 5 .  Therefore P# and hence [ , ]# are trivial maps. 

The following string of lemmas leads up to the main theorem of this part of this 
paper-that the group [X ,  RP3]  is Abelian for manifolds X with dim(X) s4. Of 
course, the latter result will also imply the corresponding result about [X, S3] .  Theorem 
2, which holds for dim(X) = 5, is needed in the analysis of the spin properties of kink 
states when information on [S1 AX, S 3 ]  for a four-manifold X is needed. The cal- 
culation involves a level-5 Postnikov resolution of S 3  and will form the subject of the 
second half of this paper. 

Lemma 1. The commutator map [ , ] : RP3 X RP3 + RP3 has a homotopy lift to S3.  

Proof. The following sequence is exact for any space Y :  
W 

[ Y, S3]  a [ Y, RP3]  - H1( Y, Z,) 

where W ( / f / ) = f * ( W , )  for W1 the Stiefel-Whitney class of S3+RP3.  Let Y = 
RP3 x RP3 and f = [ , 1. Then [ , ] lifts to S3 if and only if [ , I*( Wl) = 0. But this follows 
immediately from the fact that [ , ] 0 il and [ , ] 0 iz are constant maps for i l  and iz the 
canonical injections of the (pointed) product space: all elements commute with the 
identity. Hence there exists a unique homotopy class of maps /y I  such that I [ ,  ]I = 

G&l). 
The map y# : [X, RP3 x RP3]  + [X, S3]  determines the commutator on [X, RP3]  

because v# is a monomorphism-[If/, lgl] = 0 if and only if y#(i(f, g ) / )  = 0. We next 
have to analyse the map y#  which is induced by y on homotopy classes of maps with 
domain a four-manifold and, since S3 is four-equivalent to E4, it will be sufficient to 
discuss the associated map q4 0 y. In turn, the map q4 0 y is specified by p4 0 (q4 0 y )  = 
q3 0 y, that is, by the class y*( lq31)=y*(S3) of H 3 ( R P 3 x R P 3 , Z ) .  Consider the 
following lemma. 

Lemma 2. y*(S3)  is a two-torsion element and there exists a class C of Z2 such that 
y*(S') = P2(C * W10 W1) where P Z  is the Bockstein homomorphism H 2 ( R P 3  x 
RP3, Z2) + H 3 ( R P 3  X RP3,  Z ) .  Alternatively, r 2 ( y * ( S 3 ) )  = Sql(C W 1 0  Wl). 

Proof. According to the Kunneth theorem, H3(RP3  x RP3,  Z )  decomposes as 

@ H P ( R P 3 ) 0  H 4 ( R P 3 )  * H 3 ( R P 3  xRP3)-w @ Tor(HP(RP3),  H 4 ( R P 3 ) )  
p + q = 3  Ir p + q = 4  

where H k ( R P 3 )  denotes integral cohomology. The image of a tensor product class 
x 0 y under p is usually written as the cohomology cross product x x y, but we shall 
usually identify x X y with x 0 y .  The exact sequence is split so that H3(RP3  x RP3)  has 
generators x 3 0  1, 1 0  x 3  and t2 where f2 is a two-torsion element arising from the 
summand Tor(H2(RP3), H2(RP3) )  = Tor(Zz, Z,) = Z2 and x 3  denotes the generator of 
H3(RP3) .  Given these generators, there exist integers a, b, c such that 

y * ( s 3 )  = a + ( x 3 0  1) + b - (1 ox3) + c t2. 

We claim that a = b = 0. To see this, recall that [ , ] 0 il = [ , ] 0 i 2  = 0 for i l  = (1 x 0 )  0 A 
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and i2 = (0 x 1) 0 A. This implies that y 0 i l =  0 and y 0 iz = 0 because CT# is a monomor- 
phism and hence that iT 0 y* (S3)  = 0 and iz 0 -y*(S3)  = 0. But 

iT 0 y"(S3)=A*(a  * ( ~ 3 0 0 * ( 1 ) ) ) + A * ( b * ( 1 @ 0 * ( ~ 3 ) ) ) + i T ( t 2 ) .  

It then follows that a = 0 because iT ( t 2 )  = 0 ,  being a two-torsion element in a free 
Abelian group. Similarly, b = 0 and hence y*(S3) is a two-torsion element, i.e. 
y*(S3)  E Ker(2,) = Im( p z )  in the Bockstein coefficient sequence associated with 
Z-Z%Z2. The group H 2 ( R P 3 x  RP3, 2,) has generators I x ~ l ~ 0 1 ,  10 lx2/2 and 
Wl 0 Wl where x 2  generates H2(RP3),  and hence Im( p2)  is generated by p2( W10 W I )  
because Ker( p2) = Im(.rr2*) which is generated by Ix2I2O 1 and 10  Ix2I2. It then follows 
immediately that y*(S3)  = p2(C ( W I O  W l ) )  for some class C of 2 2 .  

2 

We therefore regain an earlier result: if i# = 0 and H 3 ( X ,  2)  has no two-torsion, 
[X,  RP3] is an Abelian group. For then p4# is an isomorphism and hence [ l f l ,  lgl] = 0 if 
and only if (f, g)*  0 -y*(S3)  = (f, g)*(c t 2 )  = 0 which is certainly true if H 3 ( X ,  2) has no 
two-torsion. It also follows that because p2 is functorial with respect to induced 
cohomology homomorphisms, the commutator [ l f l ,  Ig/]  is specified by p2(C (f*( W I )  U 

g*(W1))). For example, if f*( W l )  = g*( W l ) ,  i f 1  commutes with Igl because f*( W I )  U 

g"( W I )  =f*( W1)' = f * ( I x 2 1 2 )  = f * ( x 2 ) 2  which is in Ker(P2). In order to determine the 
universal obstruction C which will yield results for all manifolds X of dimension less 
than four, we consider the case of X = S' x RP3 in detail, the first task being to establish 
that [SI x RP3, RP3] is an Abelian group independent of C. 

Example: the group [S' x RP3,  RP3] 
Let il, i3 : S ' ,  RP3 + S1 x RP3 and pl,  p 3  : S1 x RP3 + S',  RP3 be the canonical inclusion 
and projection maps. It is then straightforward to establish that the following mesh of 
groups and homomorphisms commutes and is exact along any vertical or horizontal 
three-map segment which starts on part of a group extension: 

[m3, s3] - [m3, m3] H ' ( R P ~ ,  2,) 
6 : ;  .1 TI:  P : :  J. f': PT V t': 

1°C 1 inc I I f  T P f  

/ I  

[si x u 3 ,  s3i - [s X R P ~ ,  w31 ~ H ~ ( S ~ X R P ~ ,  2,) 

Ker(l3#) - Ker(iF) -H1(S1,Z2) 
U #  

LS', ~ ~ 3 1  y H ' ( S ' ,  2 2 ) .  

This exhibits [S' x RP3, RP3] as a group extension of Ker(ig) by [RP3, RP3] and 
Ker(i?) as a group extension of Ker(z7) by H'(S' ,  Z2) .  The superscript '*' refers to 
homomorphisms associated with S 3  and the dotted homomorphisms are cross sections 
which split the extensions on the right. In turn, the group Ker(z7) fits into the following 
morphism of group extensions: 

H4(S1xRP3,Z2) -Ker(f3#l-H2(RP3,2)~H'(S1,Z) 
'# 

1°C 1 '../ 
P*# 

I /  
H4(S1x RP3,Z2)-[S1 x R P 3 ,  S 3 ] -  H 3 ( S ' X R P 3 , 2 ) .  
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We note that if 161 E H4(S' x RP3,  Z2), ?f ( / i  0 61) = 0 because iT (161) € H 4 ( R P 3 ,  ZZ) = 0,  
i.e. Im(i#)cKer( iy) .  Therefore Ker(i;#) is a group extension of ZZ by ZZ and is 
consequently Abelian because the only groups of order four, Z4 and 2 2 0 2 2 ,  are 
Abelian. In fact, Ker( l r )  is split. 

Lemma 3. Ker(?f) is isomorphic to Z20Z2. 

Proof. If Ig/ E Ker(fr) ,  g 0 i3 = 0 and automatically, g 0 il = 0 because r r l (S3)  = 0. Hence 
if J : S' v RP3 c S' x RP3 is the inclusion of the coordinate axes and P : S1 x RP3 + S' A 

RP3 XRP3 is the projection onto the suspension, /gl = P#(lpI) for some homotopy 
class 1pI E [RP3,  S3] ,  i.e. P# : [XRP3, S3]  + Ker(?r) is surjective. Consider the following 
commutative diagram: 

It is easy to establish that the diagram commutes and it then follows from the 
five-lemma that P# is an isomorphism. According to Shastri et a1 (1980) [ZRP3,  S 3 ]  is 
split. Therefore Ker( l f )  is also split. 

Lemma 4 .  Ker(ir)  is isomorphic to Ker(i?)O&. 

Proof. Referring to the main diagram decomposing [S' x RP3,  RP3]  into group exten- 
sions, Ker(if) ,  which is not necessarily Abelian, is a split extension of Ker(?f) by 
H'(S ' ,  Z2). Hence Ker(if ) is a group of order eight by Lagrange's theorem. There are 
only five groups of order eight, of which only two are non-Abelian; these are: (1) Zs (2) 
Z40Z2 (3) 2: (4) D4 and ( 5 )  0: where D4 is the dihedral group of the square and@ is 
the dicyclic group with two elements of order four. The group D4 is a split extension of 
Z4 by Z2 and 0 2  is a non-split extension of Z4 by Z2. It therefore follows that Ker(i?) 
is Abelian (having a split kernel) and since it is a split extension, it must be isomorphic to 
Z:. 

Lemma 5. [S'  x RP3,  RP3]  is Abelian (and isomorphic to Z: O Z ) .  

Proof. According to Shastri et a1 (1980) [RP3,  RP3]  =Z. Therefore, [S' x RP3,  RP3]  is 
a semi-direct product of 2: by 2 and, as such, is determined by a homomorphism of 
Hom(2, Aut(Z:)), itself determined by the automorphism A(1) defined by the inner 
automorphism induced by lp31. It is easy to see that the latter automorphism is trivial on 
Ker(i^r) and hence that A ( l )  is determined by its action on p?( l y \ ) ,  where I y /  is the 
homotopy class of the 360" rotation about an arbitrary axis r in R 3  representing a 
generator of ~ ' ( R Y ~ ) :  

IP31P7(l~l)lP31-1 = If1 forf(x,  Y )  = YY(x)Y-'.  

We claim that f - y 0 pl .  To see this, note that the map 4 from RP3 into the space of 
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maps from S' into RP3 defined by: &(y)(x) =f(x, y )  is continuous, each 4(y)  being a 
rotation about an axis y ( r )  and hence homotopic to $ ( e )  = y. Therefore A is trivial and 
[S' x RP3,  RP3] is Abelian. 

Lemma 6. The universal obstruction C of lemma 2 is trivial. 

Proof. The homomorphism Sq2 0 r 2  is trivial because the generator x 2 0  1 of the group 
H2(S1 x RP3,  2) is mapped into I x & 0  1 = W t O  1 = 0 because H4(RP3,  2,) is trivial. 
The homomorphism P2 is defined on the generators of H2(S1 x RP3,  2,) by 1~~1~0 1 - 
0 (because 1x21201 E Im(r2.)) and Pz( W10/y112) = ylOxz.  According to lemma 5 ,  
[S' x RP3,  RP3] is an Abelian group. Thus for any homotopy classes I f ] ,  lgl, [ l f l ,  Igl] = 
CT# 0 y#( l ( f ,  g ) l )  = 0 which implies that y#( l ( f ,  g ) l )  = 0 because (+# is a monomorphism. 
But then p4 0 y#( l ( f ,  g ) l )  = P2(C*(fr( Wl) u g*( WI))) = 0. Hence if there exist classes 
I f l ,  Igl such that f*( WI) u g * (  W,) & Ker(Pz), it must follow that C = 0. Let f :  S'x 
RP3 + RP3 be the projection p 3  and let g : S1 x RP3 + RP3 be k 0 p1 where k represents 
the generator of r l ( R P 3 ) .  Then f*( Wl) = (1 0 WI), g*( WI) = / y 1 ) 2 0 1  and f*( Wl) U 

g*( Wd = / y 1 / 2 0  Wl E! Ker(P2). Therefore C = 0. 

Corollary. The map q4 0 y lifts to K(Z2 ,  4). That is, there exists a universal obstruction 
101 E H4(RP3  x RP3,  2,) such that q4 0 y = i 0 e. 

The above obstruction 8 determines the commutator on [X ,RP3]  for four- 
manifolds X in that [ l f l ,  / g l ]  is trivial if and only if i # ( ( f ,  g)*(l@l)) = 0. Note that this 
already establishes that [X ,  RP3]  is Abelian for those manifolds with i # = O ,  and 
consequently we only need to consider manifolds with non-trivial i#. Using the 
Kunneth theorem, it follows that H4(RP3 x RP3, 2,) has Z2 basis vectors W:0 W:, 
W: 0 Wl and W10  W:. There must thus exist a vector (A, B, C) of 2: such that 

lel=A.(W:OW:)+B.(W:OWl)+C.(WiOW:). 
The following lemma establishes that (A, B, C) = 0. 

Lemma 7. (A, B, C) = 0. 

Proof. (1) Let T be the transposition diffeomorphism of RP3 X RP3.  It then follows 
from the property [ , 3 0 T = I  0 [ , ] where I :  x -x-' that T*(l@l) = 181. But then it is 
easy to show that this implies that B = C. (2) B = 0. To see this, it is sufficient to 
consider the example of S' x RP3 once again, where we recall that Ker(i#) = 0 because 
S q 2 0 r 2 = 0 .  Let f, g be the functions defined above. Then f*(W:)ug*(W1)= 
/y1120 W: which is the generator of H 4 ( S 1  x RP3,  Z Z ) ,  whilst f*( W1) u g * (  W:) and 
f*( W t )  u g*( W:) are trivial. Therefore, since we established above that [S' x 
RP3,  RP3] is Abelian, y#(l( f ,  g ) l )  = i#(B (f*( W I ) ~  U g*( WI))) = 0 implies that B = 0. 
(3) A = 0. To demonstrate this, we consider the example of RP2 X RP2,  first noting that 
[RP2 X RP2,  RP3] is an Abelian group. The latter follows from the fact that Sq2 0 r2 = 0 
which, together with H3(RP2  x RP2,  2) = 0 ,  implies that i# is an isomorphism of 
H4(RP2  X RP2,  2 2 )  onto [RP2 x RP2,  S3]  and therefore [RP2X RP2,  RP3] is a group 
extension of Z2 by Z20Z2. But then the extension must be Abelian, for by Lagrange's 
theorem, it has order eight and must therefore be isomorphic to one of the five groups 
discussed in lemma 4. The only non-Abelian groups of order eight are D4 and DT 
which are extensions of Z4 by Z2. It therefore follows that [RP2 x RP2,  RP3] is 
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Abelian. Consider the functions f, g = k 0 pl,  k 0 p 2  where p1 and p 2  are the projection 
maps of RP2 X RP2 and k is the inclusion RP2 c RP3. We have k*(  W l )  = y l ,  the 
generator of H’(RP2, 2,) so that f*( Wl) = y 1 0  1 and g*(Wl) = 1 0 y l ,  and therefore 
f*( W:) u g*(  W:) = y l 0 y :  which is the generator of H4(RP2 x RP’, Z2) .  Thus 
(f, g ) * ( / O ] )  = A (f*( WI)’ LJ g*( W$) = 0 which is possible only if A = 0. 

The combination of lemmas 1-7 establishes the main theorem. 

Theorem 3. If X is a manifold of dimension s 4 ,  [X,  RP3] is an Abelian group. 

5. Structure of [x, s3] for Sq2 0 m2 = o 
Recall that [X ,  S3] is a group extension of H4(X, 2,) = 2 2  by H 3 ( X ,  2). There is a 
decomposition of the latter group into its free and torsion subgroups: 

H 3 ( X ,  2) =Zb3@ & Zm, 
k = l  

where b3 is the third Betti number of X (non-zero if X is parallelisable) and thc integers 
mk satisfy the relation that mk divides mk+l for 1 S k S n - 1. The group of equivalence 
classes of Abelian extensions of 2 2  by H3(X,  2) may therefore be decomposed as 

Extz(Z2, H 3 ( X ,  Z))GEXtz(22, Z)b3@( & Extz(Z2,Zmk)). 
k = l  

The group Extz (Z2,  2)  is trivial because any extension by a free Abelian group splits. 
Extz(22,Zmk) is isomorphic to Zz with generator the class of the extension 
22~2Zmk+2mr. Therefore Zb3 will always split off any group [X ,  S 3 ]  although the 
torsion subgroup may involve non-trivial extensions. Thus [X,  S3] = Z b3 0 T’ where T’ 
may be a non-trivial extension of ZZ by the torsion subgroup of H 3 ( X ,  2). 

6. Structure of [X, RP3] 

By our above comments, [X,  S3] will be of the form Zb3@ T’ where T‘ is either the 
torsion subgroup T of H3(X,  2)  (if Sq2 0 7 2  # 0), Z2@ T or some non-trivial extension 
of 2 2  by T. [ X ,  RP3] is a group extension of [X,  S3] by H 1 ( X ,  2 2 )  which is isomorphic to 
2,” for some m 2 0, m being related to b3. The group [X,  RP3] is therefore an element 
of Extz(Zb3@ T’, 2,”) which may be decomposed as 

Extz(2,  Z Z ) ~ ~ ~ @ E X ~ Z ( T I ,  2 2 ) ” .  

Now ExtZ(Z, 2,) is isomorphic to Zz, with generator the class of the extension 
2 W Z  + Z 2 ,  whilst Extz (T‘, 2,) is itself an extension of extension groups in general. It 
therefore follows that Zb3 occurs as a direct summand in [X,  RP3] in an extension of the 
type 

z ~ ~ @ z , ” - ~  H Z ~ ~ @ Z , ” - ~  +z,“ 
I @ 

where I ( g i )  is divisible by two in [ X ,  RP3] for ‘k ’  infinite cyclic generators g,. Thus 2 
appears m - k times as a direct summand and k times as 2 . 2  where the extension 
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ZwZ-Zz is regarded as 2 . Z c Z + Z 2 .  To summarise, we have the following 
theorem. 

Theorem 4 .  Let X be any four-manifold. Then the Abelian group [X,  S3]  is isomorphic 
to Zb30 T' where the torsion subgroup T' is isomorphic to: (i) The torsion subgroup of 
H3(X,  Z) if X is non-compact or if X is compact with Sq2 0 7 r 2  # 0, i.e. [X, S 3 ]  = 
H 3 ( X ,  Z ) ;  (ii) an extension of Z2 by T if X is compact and Sq2 0 v2 = 0. Similarly, the 
Abelian group [X ,  RP3] is isomorphic to Zb3@Z; 0 T" where m - b3 i n m for 
m = dimz,(H1(X, 2 2 ) )  and T" is a group extension of T' by H1(X, 2 2 ) .  

7. Elementary examples 

(1) S2 x S 2 .  The group H'(S2 x S2, Z2) is trivial, which implies that [ S 2  x S 2 ,  RP3]  is 
isomorphic to [ S 2  x S2, S 3 ] .  Moreover, because H 3 ( S 2  x S2, Z )  is also trivial, [S2 X 

S2, S 3 ]  is determined by Sq2 0 7r2 which is also trivial because it maps the generators 
(S2)01 and 10(S2) onto the classes (S2j201 and 10(S2)2, which vanish because 
( S 2 ) 2  = 0. Hence [ S 2  x S 2 ,  RP3] = [S2 X S2, S 3 ]  = H4(S2 X S 2 ,  Z2) = 2 2 .  

(2) CP2. H1(CP2, Z2) = 0 which implies that [CP', RP3] = [CP', S 3 ] .  Also, 
H3(CP2, Z) = 0 so that all depends upon the homomorphism Sq2 0 7r2. H*(CP2, Z) is 
the truncated polynomial algebra of height four generated by the class C1e 
H2(CP2, Z ) .  Thus the top-dimensional cohomology group has generator C: and 
IC1\; = Sq2 0 7r2(C1) generates H4(CP2, Z2) ,  It therefore follows that i# = 0, i.e. 

(3) RP4. H*(RP4, 2 2 )  is the truncated polynomial algebra of height four on the 
generator W1 E H'(RP4, Z 2 ) .  Also, H3(RP4,  Z) = 0 which implies that [RP4,  S3]  only 
depends on Sq2 0 7 r 2 .  The group H2(RP4,  Z) is isomorphic to Z2 with generator 
x 2  = p2( W l )  which satisfies 1x212 = Sql( W J  = W:. Thus Sq2 0 m(x2)  = W;' which is the 
generator of H4(RP4,  Z2). This implies that i+ = 0 and hence that [RP4,  S 3 ]  = 0 and 

(4) RP2 x RP2. Recall from the proof of lemma 7 that Sq2 0 772 = 0 so that [RP2 x 
RP2,  S 3 ]  = H4(RP2 x RP2,  Z2) = Z2. Also, H1(RP2 x RP2,  2,) = Z; so that [RP2 x 
RP2, RP3] is a group extension of ZZ by Z:, either Z: or Z40Z2. Now [RP2, RP3]  = 
H1(RP2,  Z2)=Z2. Let lkl be the generator. Then the map z : H'(RP2xRP2, Z2)+ 
[RP2 x RP2, RP3] which sends the generators y1 0 1 and 10 y l  into lk 0 pll and Ik 0 p21 is 
a splitting homomorphism. z is a cross section because W(lk 0 p l l )  = pT 0 k*( W1) = 
pT (y l )  = y 1 0  1 etc; it is a group homomorphism because Ik 0 p1I2 = lk2 0 pll = 0 and 
similarly, / k  0 p212 = 0. Hence [RP2 X RP2,  RP3] = Z:. 

( 5 )  S1 x S 3 .  The group H2(S1 x S 3 ,  Z) is trivial and therefore so is Sq2 0 7 r 2 .  Also, 
H3(S1  x S3, 2 )  =Z so that [S' x S 3 ,  S 3 ]  is the split extension Z202. [S' x S3, RP3] is 
therefore an extension of 2 2 0 2  by H1(S1 x S 3 ,  2,) Z2.  Let 1 j /  generate r 1 ( R P 3 )  = 
Z2. Then lj12 = 0 and therefore the function y 1 0  1 - l j  0 pl /  is a splitting homomor- 
phism and [S' x S 3 ,  RP3] =Z2@2@Z2.  

[cP', s3] = [cP', R P ~ ]  = 0. 

[ R P ~ ,  R P ~ ]  = H ~ ( R P ~ ,  2,) = z2. 

8. Spin properties of kink states 

Shastri et a1 (1980) investigated the effect of 360" rotations about any spatial axis on 
kink states and obtained the following fermionic property for certain kink states. 
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Suppose that M is a compact, closed three-manifold of type 2, i.e. [M, RP3]  is a split 
extension of [M, S 3 ]  by H1(M,  2,) and that I f 1  E [M, S 3 ] .  Then if I f \  has odd kink 
number, p4#(lfl) = f * ( S 3 )  identified with deg(f) is odd, I f 1  'changes sign' under 360" 
rotations about any spatial axis. The effect of rotations on homotopy classes of maps is 
defined in terms of a map 6 : [M, S 3 ]  + [M, as3] = [ZM, S 3 ]  and it is shown that if deg(f) 
is odd, 6(lfl) is a non-trivial element of order two in [ZM, S3].  In the following sections, 
this construction will be generalised to arbitrary four-manifolds. Of course, the 
projectionp3+(lfl) E H3(X, 2)  need no longer be labelled by an integer, but we still have 
a definition of even or odd parity via the coefficient homomorphism 7 2 '  : H3(X, 2) + 
H3(X, Z2), i.e. f * ( S 3 )  is even or odd according to f * (S3 ) ,  zero or non-zero, and this 
definition reduces to the usual one for X homotopy equivalent to a three-manifold. 
Using this definition, we shall demonstrate that for any X with dim(X) S 4 and 
I f 1  E [X, S 3 ]  such thatf*(S3) # 0 mod(21, 6((fl) E [ZX, S 3 ]  is non-zero and of order two, a 
result which considerably generalises that of Shastri et al. 

In order to carry out the calculations, we first have to obtain a level-five Postnikov 
resolution of S 3  which involves the calculation of the group N6(E4, 2,). However, in 
§ 2 of this part of the paper is a definition of the map 6 : [X, S 3 ]  + [ZX, S 3 ]  which we 
factorise through [X, RP3 A S 3 ]  via a canonical map + : RP3 A S 3  + S 3 .  After obtaining a 
level-five resolution of S 3  which involves knowledge of the groups H k ( K ( G ,  q ) ,  2,) for 
G =2 or 2, and 0 s k ~ 7 ,  the map 3 is analysed as a map RP3 A S 3  + E5 for E5 
five-equivalent to S3.  This enables us to calculate 9# and hence 6 and obtain the main 
theorem, theorem 5 ,  on the effect of 360" rotations. 

8.1. Definition of t?:[X, S 3 ] + [ 2 X ,  S31 

The group SO(4) acts transitively on S 3  via the canonical action A : SO(4) x S 3  + S 3  
where A : (A, x ) +  A ( x ) .  The isotropy group of the group identity is the subgroup 
SO(3) c SO(4) and, of course, SO(3) operates on S 3  via the map A ,  the orbits of points x 
in S 3  with x # *e being diffeomorphic to S2.  We therefore have a map A : SO(3) x S 3  = 
RP3 x S 3 +  S 3  such that the related map y defined by y ( R ,  x )  = x- 'A (R, x )  = x- 'R (x) is 
constant on the subspace RP3 v S 3  and thus defines a map y : RP3 A S 3  + S 3  by 9 0 P = y 
where P is the projection mapping RP3 x S 3  + RP3 A S 3  = R P 3  x S3 / (RP3  v S 3 ) .  
Suppose next that R : S1 + RP3 is any parametrised rotation through 360" about a 
spatial axis. Then there is an induced map R A f : S' A X + RP3 A S 3  and we may define 
a mapping O(f) : S' A X  + S 3  by O(f) = 9 0 (R  ~ f ) .  Correspondingly, one may define 

6 : [X, S 3 ]  + [EX, S 3 ] ,  

e^:  Ifl-le(f)l= 130 (R  ~ f ) l =  M ( R  ~ f ) l ) .  
We therefore have a pairing, 7r1(RP3) X [X, S 3 ] +  [ZX, S 3 ]  which details the action of 
rotation loops on kink states and factors through the maps I f l ~ l ( R  ~ f ) l  E 

[ZX, RP3 A S 3 ]  and a map 9# : [ZX, RP3 A S 3 ]  + [XX, S 3 ] .  We will analyse ++ through a 
level-five Postnikov resolution of S 3 .  

8.2. Level-five Postnikou resolution of S 3  

In this section, we shall factorise the four-equivalence q4 : S 3  + E4 which we used earlier 
through a space Es which is five-equivalent to S3:  
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F- s3,  

As usual, E5 is the total space of the pull-back to E4 of the path fibration over K(22,6)  
(where we note that .rr5(S3) = 2,) along a cohomology class O4 E H6(E4, 2 2 ) .  Now given 
any class 04, q4 lifts to E5(04) because H6(S3,  2,) = 0. It also follows that the map q5 
associated with any non-trivial class O4 is a five-equivalence because the transgression 
H5(Fq4, 2 2 )  + H6(E4,  2,) is an isomorphism. Thus knowledge of H6(E4, 2 2 )  will 
enable us to construct a level-five Postnikov resolution. We can compute the latter 
group by examining the Serre exact sequence extracted from the spectral sequence of 

the orientable fibration E4--K(Z, 3), which we recall is the pull-back to K ( 2 ,  3) of the 
path fibration over K(&, 5 ) .  There is the following cohomology ladder of Serre exact 
sequences: 

p4 

The bottom line of the ladder is the Serre sequence of the path fibration over K ( Z 2 ,  5) 
and the trivial group represents H6(PK(2,,  5 ) ,  2 2 ) .  It therefore follows that the 
transgressions T' associated with the path fibration are isomorphisms and that the 
transgressions T are defined by Tq = (Sq' 0 TZ)* 0 Ti.  Thus transgression for the 
fibration E4 + K(Z ,3 )  is essentially composition of a cohomology operation with 
Sq2 0 .rrZ : (Sq2 0 T,)* : Igl H Ig 0 Sq2 0 n-21. A knowledge of the generators of 
H5(& 4, Z,), H6(Zz ,  4, Z,)  and H 6 ( Z ,  3,&) will enable us to define T5 and hence 
express H6(E4, 2,) in terms of H6(Z2, 4,Z2). Using theorems of Serre (1972), we 
obtain the following generators: 
(a) H'(z,, 4 , 2 2 1  2 2  

(b) H6(Z2, 4 ,zd  2 2  

(c) H 6 ( 2 ,  3 , Z Z )  E 2 2  
The transgression homomorphism T5 is therefore defined by Sql-Sq* 0 Sq2 0 T ~ .  Now 
the Adem relations (Spanier 1966) 

with generator Sql : H4(* ,  2 2 )  + H5(*,  ZZ), 
with generator Sq2: El4(*, 2,) + H6(*, ZZ), 
with generator Sq3 0 r r ~  : H3(* ,  Z)+ H6(*, 2). 

LW.1 k j - k - 1  
Sq'oSq'= Sq'''-koSq I( )lmod(2) 

k = O  i-2k 

(where O <  i < 2j and [ i /2]  is defined as the largest integer less than i /2) imply that 
Sq' 0 Sq2 = Sq3 :H3(* ,  2,) + H6(*,  Zz), i.e. x3 -/x31$. It therefore follows that T5 is an 
isomorphism, and hence if we choose 0 4  as the inverse image of Sq2 under i*, we have a 
Postnikov resolution of S 3  to level five. (T6 is trivial because Sq4 : H3(*, 2,) + I f7 (* ,  2,) 
is the trivial map.) 

By combining the Puppe sequences for p s  and p4, we obtain the following pair of 
linked sequences which completely characterise homotopy classes of maps from 
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five-manifolds into S3. It is important to note that these are only exact sequences of sets 
and maps, although some objects do lie in the category of groups. 

We shall only be interested in the application of the above system in the case where X is 
the suspension of a four-manifold, that is, we replace X 5  by ZX4. In this case, the 
diagram simplifies a little in that Sq2 0 T Z  : H2(ZX, Z )  + H4(ZX, 2,) coincides with the 
operation Sq2 0 r2 : H ' ( X ,  2) -+ H 3 ( X ,  2,) under the suspension isomorphism because 
Steenrod squares commute with suspension. The latter cohomology operation is trivial. 
Similarly, the operations Sq2 0 r2 and Sq2 on H3(ZX,  2)  and H3(ZX,  Z2)  are the 
suspensions of the corresponding operations on H 2 ( X ,  Z )  and H2(X,  Zz). Finally, 
H6(  Y, 2,) is trivial for any five-manifold Y so that p 5 #  is a surjective map. We shall use 
the above resolution in the following sections in order to analyse the characteristic map 
9 :.RP3 A S3 + S 3 .  

8.3. The characteristic map 9 
We can now characterise the map 9 up to level five by analysing the associated map 
q 5  0 3. In turn, q 5 0 9  is specified by p5 0 q 5  0 3 = q4 0 9 from RP3 A S3 into E4 which is 
specified by p4 0 q4 0 9 = q 3  0 9, i.e. by the cohomology class 9 * ( S 3 )  E H3(RP3  A S3, Z ) .  
The latter group can be calculated by repeated application of the suspension iso- 
morphism because RP3 A S 3  is homeomorphic to Z3RP3, and hence 

H3(RP3 A S3,  Z )  = H Z ( R P 3  A S 2 ,  2)  =H' (RP3  A S ' ,  2)  = 0.  

Therefore p4#(/q4 0 91) = 0 which implies that q 4 # ( ( 9 1 )  E Im(i#), that is, q4#(lrl) = i#(ltl) 
for 1x1 E H4(RP3 A S3, Z2). A string of suspension isomorphisms yields H4(RP A 

S3, ZZ) =H'(RP3,  2 2 )  = 2 2 .  However, to obtain an explicit generator, we use the 
following lemma. 

Lemma 8. P* : H4(RP3 A S 3 ,  2,) + H4(RP3 x S3,  2,) is an isomorphism. 

Proof. This follows from the mapping sequence of the inclusion map J :  RP3 v 
S3 c RP3 x S3 together with a homotopy equivalence of the mapping cone with the 
quotient space RP3 x S3 / (RP3  v S3)  = RP3 A S 3  which yields the exact sequence 

H3(RP3 x S 3 )  - H3(RP3  v S 3 )  + H4(RP3 A S 3 )  -+ H4(RP3 x S 3 )  - H4(RP3 v S3).  
J:  S P* J: 
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Firstly, by the Mayer-Vietoris theorem, H4(RP3  v S 3 )  = 0, so that P: is an iso- 
morphism. By exactness, Ker(Pz) = Im(6). But 6 is the trivial homomorphism (and 
hence Pz is an isomorphism) because JT is an isomorphism. For, by the Kunneth 
theorem, H3(RP3 x S 3 )  has generators W: 0 1 and 1 O(S3)2 which are just p ?  (W:) and 
p ; ( ( S 3 ) 2 )  where p1 and p z  are the projections of the product space. Therefore 
JT O P T  ( W:) = ( p i  0 J)*( W:) = W: and JT 0 p z  ((S3)z) = (S3)2 because pi 0 J are iden- 
tity maps. But W 1  and (S3)2 are the generators of H3(RP3 v S 3 )  by the Mayer-Vietoris 
theorem. 

In the following, we shall identify the generator of H4(RP3  A S 3 ,  2,) with its image 
W1 O(S3),  in H4(RP3  x S 3 ,  ZZ). Recall that q4#( l$ l )  = i#( lx/)  for 1x1 E 

H4(RP3 A S 3 ,  Zz). By the above lemma, we may write 1x1 = C ( W10(S3) , )  for some 
class C of 2 2 ,  so that the mapping ê  : (X, S 3 ]  + [XX, S 3 ]  is specified at level four by the 
class q 4 #  0 e^(lfl) = q4#(/$0 (R ~ f ) l )  = lq4 0 9 o (R ~ f ) l  = i#((R ~f)*(lxl)). Thus by iden- 
tifying (R ~f)*(lxl)  with (R x f ) * ( C  - ( W 1 0 ( S 3 ) z ) )  = C ( I y 1 1 ~ @ f * ( ( S ~ ) ~ ) ,  where y 1  is the 
generator of H1(S1, Z),  we pinpoint the role of ‘odd kink number’. This motivates the 
following definition. 

Definition. A kink state I f 1  E [X,  S3]  for dim(X) s 4 has odd kink number if the 
associated class rZ*(p4#(jf)))  = f*(S’)z is non-zero. 

Lemma 9. The universal obstruction C defined above is trivial. 

Proof. Suppose that M is a compact three-manifold of type 2, (Shastri et a1 1980) i.e. 
there exists a class I f 1  E [M, S 3 ]  with degree (f) = 1, implying thatf*((S3)z) = Then 
according to Shastri et al, q4#(8*(lfl)) is non-trivial in [ZM, S 3 ] .  But then C = 1, because 
q4#(8*(1f1)) = b ( C *  ( W I O ( M ) Z ) )  and WlO(M)Z generates H4(XM, Zz). 

Corollary. If M is a three-manifold and I f 1  E [M, S 3 ]  has odd kink number in the sense 
that f*(S3)z  = e^(Ifl) is non-zero and of order two. 

Proof. Lemma 9 implies that e^(lfl) = i#(Iy1(20(M)2) # 0. We have already noted that 
i#  is a group homomorphism for four-manifolds. Thus e^(if \ )  has order two. 

Corollary. If X is a four-manifold and I f 1  E [X, S 3 ]  has odd kink number, q 5 # ( & l f ] ) )  is 
non-zero in [EX,  s3]. 
Proof. q ~ ( e ^ ( l f I ) )  # 0 because q4#(e^(lfl)) = P S #  o q ~ ( e ^ ( l f l ) )  Z 0.  

Having established that e^( l f l )  is a non-trivial element of [EX, S 3 ]  for odd kink states, 
we now determine the order, again using the universal properties of $. Consider the 
class e^(Ifl)’= l @ ( f ) ’ l =  12 0 9 0 (R ~ f ) l  where 2 : S 3 +  S 3  is the squaring map. e^ ( l f l ) z  is 
specified by the map 2 0 9 : RP3 A S 3  + S 3  and it is clear that q3#(12 0 $ 1 )  = 2 $ * ( S 3 )  = 0. 
It therefore follows that q4#(12 0 $ 1 )  = i#(li() for some class 121 E H4(RP3 A S 3 ,  Zz). By 
our earlier remarks, there must exist a class D of Zz such that I,$/ = D * ( W10(S3)z ) .  

Lemma 10. The universal obstruction class D is trivial. 

Proof. If dim(X) $4, q4#(Ie^(f)1)2 = i#(D (~yl~zOf*(S3)z)). In particular, for X = M a 
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compact three-manifold of type 2, according to Shastri et a1 (1980), if l f l  has odd kink 
number, q4#(\fl) is non-zero and of order two. This implies that D = 0. 

By lemma 10, if ( f l  E [X, S 3 ] ,  dim(X) S 4 and f*(S3)2 # 0, e*( l f l )  is non-zero in [ZX, S 3 ]  
and e*(Ifl)' is an element of Ker(p5#). Therefore there must exist aclass @ E H5(ZX,  2 2 )  

such that q 5 # ( e * ( l f ) ) ' )  =j#(@) .  This cohomology class is determined by 3 since 
q5#( /2 0 71) E Im(j#), that is, there exists a universal class & such that @ = (R  ~ f ) * ( @ ) .  
Applying the usual string of suspension isomorphisms, we find that H5(RP3 A S 3 ,  2 2 )  = 
H2(RP3,  Z2) and the generator may be identified with the generator W:O(S3)2 of 
H5(RP3 x S 3 ,  Z2). This immediately implies the main theorem on spin. 

Theorem 5. Let X be a manifold of dimension <4 with H3(X,Z2)  # 0. Then if 
I f /  E [X, S 3 ]  has odd kink number, f*(S3)2 # 0, the class e*(lf l )  E [ZX, S 3 ]  is non-zero and 
of order two. 

Proof. By our earlier remarks, f * ( S 3 ) 2  # 0 implies that q s # ( e * ( l f \ ) )  # 0 and that 
q5#(e*(lf1))2=jp((R ~ f ) * ( & ) ) .  Now the universal class 6 may be identified with 
E 0 (W:@(S3),) for some class E of Z2 and ( R  ~ f ) * ( & )  may be identified with 
E ((yll;0f*(S3),) which is trivial for any I f 1  because iyl$ €H2(S1,  2,) is obviously 
trivial. 

As a final remark, it is interesting to inquire about even kink states, i.e. I f /  with 
f*(s3), = 0. For, to obtain a boson-like interpretation, one should always have O ( / f l )  = 
0, expressing the invariance of even states under 360" rotations. This is certainly true 
for X homotopy equivalent to a three-manifold, because we have q4#(e*(lfl)) = 
i # ( l y l 1 2 @ f * ( S 3 ) 2 )  = 0, which implies that ;(If/) = 0 since q4# is a bijection for four- 
manifolds. However, if X is of dimension four one can only conclude that q~#( i ( j f \ ) )  E 

j#(H5(ZX,Z2)) and there seems to be no elementary way of relating I f /  and the 
corresponding five-dimensional cohomology class. The result does hold for some 
four-manifolds, e.g. CP2, but in the general case, the invariance remains to be 
demonstrated. 
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